Lung fissure detection in CT images using global minimal paths

نویسندگان

  • Vikram V. Appia
  • Uday Patil
  • Bipul Das
چکیده

Pulmonary fissures separate human lungs into five distinct regions called lobes. Detection of fissure is essential for localization of the lobar distribution of lung diseases, surgical planning and follow-up. Treatment planning also requires calculation of the lobe volume. This volume estimation mandates accurate segmentation of the fissures. Presence of other structures (like vessels) near the fissure, along with its high variational probability in terms of position, shape etc. makes the lobe segmentation a challenging task. Also, false incomplete fissures and occurrence of diseases add to the complications of fissure detection. In this paper, we propose a semi-automated fissure segmentation algorithm using a minimal path approach on CT images. An energy function is defined such that the path integral over the fissure is the global minimum. Based on a few user defined points on a single slice of the CT image, the proposed algorithm minimizes a 2D energy function on the sagital slice computed using (a) intensity (b) distance of the vasculature, (c) curvature in 2D, (d) continuity in 3D. The fissure is the infimum energy path between a representative point on the fissure and nearest lung boundary point in this energy domain. The algorithm has been tested on 10 CT volume datasets acquired from GE scanners at multiple clinical sites. The datasets span through different pathological conditions and varying imaging artifacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

Variations in Lung Fissures and Lobes: a Case Report

The Knowledge of variations in the lung can help surgeons to control bleeding during pulmonary lobectomy or might be used to reduce post-operative complications. Due to the importance of the knowledge of variations in lungs for clinicians, especially surgeons and radiologists, we report a case with lung lobe and fissure. During the autopsy of a 27-year-old man at the Legal Medicine Organizatio...

متن کامل

Automatic recognition of lung lobes and fissures from multislice CT images

Computer-aided diagnosis (CAD) has been expected to help radiologists to improve the accuracy of abnormality detection and reduce the burden during CT image interpretations. In order to realize such functions, automated segmentations of the target organ regions are always required by CAD systems. This paper describes a fully automatic processing procedure, which is designed to identify inter-lo...

متن کامل

طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندول‌های ریوی در تصاویر سی‌تی ‌اسکن

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...

متن کامل

Lung Lobes and Nodules in Ct Images

The objective of this paper is to develop a segmentation system in order to assist the surgeons to remove the portion of lung for the treatment of certain illness such as lung cancer, and tumours. The fissures of lung lobes are not seen by naked eyes in low dose CT image, there is a proposal for automatic segmentation system. The lung lobes and nodules in CT image are segmented using two stage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010